
Collapse (& Other Futures) Software Engineering

Birgit Penzenstadler, Ankita Raturi,
Debra J. Richardson,

M. Six Silberman, Bill Tomlinson
University of California, Irvine

ABSTRACT
Current software engineering efforts typically rely heavily on
industrial infrastructure. In a situation of civilizational collapse -
which various researchers have suggested could ensue in the next
century via an assortment of environmental, economic, and/or
social pathways - such infrastructure may become less reliable.
Previous research has offered some thoughts about what new
forms of software may be relevant in the context of collapse.
However, those papers did not consider how these new kinds of
software would arise. Building on previous work in software
engineering for sustainability (SE4S), information and
communications technology for development (ICT4D), and
collapse informatics, this paper explores how various forms of
civilizational collapse would affect the software development
process.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: software development process;

General Terms
Management, Documentation, Design, Economics, Reliability.

Keywords
Software development process, future scenarios, sustainability,
collapse, standards.

I. INTRODUCTION
Software Engineering (SE) has long benefitted from Moore's law
– with progress, faster computers, better networks, faster
communication, and instant access, SE moved from programming
on punch cards to live collaborative software development with
near instant feedback. It generally is assumed that this kind of
increasingly rich context of software systems and surrounding
infrastructure will continue. Indeed, the evolution to increasingly
smart phones, tablets, and corresponding apps seems to confirm
this. What if, however, such progress did not occur? What if
under certain scenarios of how society evolves, there actually is a
decrease in processing speed, storage capacity, and other aspects
of computing? We would need to rethink not just the systems we
build, but also how we build those systems. While this may sound
far-fetched, such alternative scenarios to constant progress are
being considered by other research disciplines. Researchers in
anthropology, geography, and other fields have suggested that the
collapse of global industrial society is not implausible. Scientific
understandings of collapse often suggest that institutional
infrastructures will not cease all-at-once; rather, they will
gradually become less effective and their services will grow ever
more intermittent [4]. As this transformation occurs, new forms of
software will likely become more relevant, and certain existing
processes for creating software will become less viable.

Software Engineering researchers have not really worried about
the potential of collapse. The green computing vision - broadly

construed - begins to point in that direction, if ever so slightly, as
does Software Engineering for Sustainability (SE4S) [1,2]. This
paper seeks to explore the effects that various forms of
civilizational collapse could have on the software development
process.

II. BACKGROUND
There are currently more than 1M software developers in the US
alone [5], and hundreds of thousands more in other parts of the
world. These developers design and build the software systems
that operate much of industrial civilization. Software engineering
is the field that studies and improves how these developers do the
work they do, often working in large teams to develop systems
that will be used by millions or even billions of clients.
Software engineers currently use a range of processes, from
linear, iterative and evolutionary to agile as well as hybrid
approaches in between. These software engineering processes rely
on the ongoing availability of a range of different kinds of
infrastructure, and are critical in the operation of those
infrastructures. Of the Department of Homeland Security’s list of
Critical Infrastructure Sectors [6], communication, energy, and IT
are perhaps the most heavily involved with software engineering;
however, many other sectors are involved as well. Because of the
interdependencies among these infrastructures [7], intermittency
or failure of many different sectors could compromise current
software engineering processes. This paper seeks to explore how
software engineering could be transformed by these interruptions.

III. IMPACT ON CURRENT
PRACTICES
There are a number of impacts that a collapse scenario would
have on current practice, inter alia:

A. Software requirements
The new roles software and related technologies will have in a
collapsing or post-collapse civilization would determine new
requirements for existing and new systems yet to be developed.
Depending on the nature of collapse, stakeholders and audiences,
along with their demands, would change. In the case of economic
collapse, there may be different requirements for financial
systems, bartering systems, and user auction services (like eBay
and Craigslist). In case of societal collapse, yet-another-dating-
app might not be needed, but new requirements would arise for
functional communication software. We would need to rethink the
function of software. For the example of the bartering system, a
requirement would be that it has to run on a resilient server with
redundant data storage because energy supply might be
interrupted in such a future of scarcity.

B. Software design
There is a design-for-environment movement in software
engineering and systems engineering where systems are designed

to be more environmentally friendly, but if we were designing for
collapse, we would have different constraints. These constraints
would, for example, arise from societal changes, like a
decentralized government. Integrating the human-centered
engineering movement and environmental engineering, we can
develop a coherent set of methods, metrics, and tools to design for
collapse. In particular, collapse could tie together societal,
economic, and environmental concerns.
On the technical networking level, one instance is currently
popular architectures (including model-view-controller (MVC),
client-server, pub-sub) are not necessarily collapse-resilient: they
focus on performance and throughput, cost, effort, and sometimes
efficiency. Under different collapse scenarios, different software
architectures would become prominent. In case of infrastructural
collapse, architectures (e.g., peer-to-peer) amenable to mesh
networks and alternative networking protocols would be most
useful. Mesh networks are set up a like large peer-to-peer system
but are networking completely distributedly. They are often used
in alternative Internet scenarios.

C. Software construction
Software engineering is currently a highly collaborative, global
endeavor. As this changes in different collapse scenarios,
development tools will need to evolve accordingly. Under many
collapse scenarios, collaborative software development tools like
rackspace and GitHub may become intermittent and unreliable.
There are many open source tools that developers of the future
can use to setup alternative, likely local, software development
environments (e.g., set up a local LAMP server to support a small
development team as opposed to using Linode). Once again
situating the ideas from green software engineering environments,
for example energy efficient data centers, and resilient distributed
knowledge management, we can begin to address additional
issues like intermittent energy outages.

D. Software quality
Depending on the collapse scenario, there would be a
reprioritization of software quality attributes. For example, when
thinking about reliability, resilience to power outages may
outweigh business performance. In simple words, no online shop
will make money, or have to worry about its business
performance, if its offline – assuming we still have online shops.
Efficiency concerns would be with respect to resources rather than
finances. The types of software testing conducted would similarly
be affected. Usability testing, for example, may take a back seat to
robustness testing.

E. Software maintenance
Current demands on software tend to require efforts to scale up
systems, respond to increased traffic, and (recently) reduce energy
consumption. In collapse scenarios, software maintenance efforts
would be adaptive, involving the retrofit of high priority existing
software systems to survive the changes. However, the systems
would have to be modified to cope with changes in the physical
environment, not just the software environment. The
disappearance of frameworks will require us to reverse engineer
our systems and that will enable us to develop systems that are on
more basic platforms. We would also have to prioritize software
systems based on community needs: expend effort to maintain
medical control systems versus online gaming systems.
Furthermore, we might not be able to buy replacement parts for
our computers anymore. If we have to maintain our computers at

all effort we have to scale down and retrofit ever-increasing
computing demands to platforms that don’t grow along to simpler,
leaner platforms. We might not be able to print circuit boards
anymore in such a scarce future, but we could still make PCBs
(programmable circuit boards) as we used to make them 30 years
ago.

F. Software engineering economics
In case of economic collapse, the current ‘business’ of software
could change in at least three ways. One way would be that we all
agree that free and open source software may become the norm,
with people developing systems openly, voluntarily, and freely
sharing knowledge in the commons. Secondly, potentially
collapse-resilient currencies such as Bitcoin may become the core
of a new software economy. Some organizational structures (e.g.,
cooperatives, B Corporations) may be more well-positioned than
others (e.g., public corporations whose management is expected to
maximize short-term shareholder value) to organize and support
the development and maintenance of software that responds to
user needs in collapse scenarios, and to anticipate such needs pre-
collapse [3]. Thirdly, a script-economy may arise, where the kids
who write small bash scripts that work on tiny Linux boards, take
over as the script-mafia. Bash scripting, as a skill, is suddenly way
more valued than being a highly experienced Ruby-on-Rails
programmer.

G. Software engineering process
The processes would adapt as a consequence of which
organizational entities develop software and how their daily
practice can be framed best in a systematic approach to support
good communication and leads to high quality software that meets
the needs. However, they are likely to include elements from open
source, agile and user-centered approaches. Two possible
scenarios: 1) we go towards a strictly formal and structured
software engineering process (as in the aerospace and systems
engineering disciplines) – we measure twice, and then cut once.
That way, developers are developing very diligent formal proofs
of their code before actually programming, because the cost of
computing suddenly has gone up again 2) renegade programmers
take over the net or what remains of it in informal structures and
organization and collaborate in ad-hoc networks where minimal
structured documentation and specification is needed in order to
enable maintenance and evolution.

IV. POSSIBLE FUTURE NEEDS
In terms of different collapse scenarios implying future needs, we
offer a number of hypotheses and possible solution elements.

A. Hypotheses
When reflecting upon various collapse scenarios, we came to the
following hypotheses for the future of software engineering:

a. Under the various scenarios for collapse, the demand for
innovations dries up. Consequently, Moore’s law won’t hold
anymore.

b. Right now SE seems to rely on the abundance of resources,
inter alia, hardware, money, energy, economy, work power. In
many of the future scenarios, however, there will be a
paradigm shift, as we move towards more resilience.

c. There are future scenarios that SE is not prepared for on
different severity levels. This also depends on the nature of
the systems that we will need, not only the tasks that are
performed by software engineers.

B. Possible solution elements
We suggest a number of possible solution elements that may help
addressing the arising challenges in those scenarios:
1. A framework with an overview of the scenarios and potential

solution elements would help to propose future research
agendas.

2. Some concepts from collaborative work and crowd sourcing
might offer additional help as they are used in environments
that are not always “reliable” (in terms of guarantees of
contributions).

3. Further solution elements might be ad-hoc networks, modular
software development, and distributed back-up.

4. Analogies in other research fields: We can draw parallels to
the CHI and UBICOMP communities and learn from there.

V. CONCLUSION
Civilizational collapse may seem like a "fantastical scenario", and
in fact has been called such by a reviewer of an NSF proposal
submitted by several of the authors of this paper. However, there
are global transformations under way that are difficult to avoid, if
one looks at the world through scientific eyes. And, at least at
present, there are not clear mechanisms in place in human
communities to prevent those transformations from having
profound impacts on the operation of industrial civilization.
 While collapse is not certain, it is one possible outcome of these
transformations.

In the face of collapse, though, there will be opportunities for
software systems to preserve human quality of life in the face of
declining resource availability. And these software systems
would mostly need to be built *during collapse*. Therefore, it

seems appropriate now, in a time of great abundance, to devote
some attention to a consideration of collapse as an insurance
policy, and given our community's expertise, to the processes by
which collapse-relevant software systems could be built. While
the authors of this paper hope that this research never becomes
relevant to put into practice, the growing possibility that it could
become relevant suggests that now would be an excellent time to
begin this discussion.

Acknowledgement: We would like to thank André van der Hoek
and Marcel Pufal for discussing these ideas with us. So long, and
thanks for all the fish.

VI. REFERENCES
[1] Penzenstadler, B. Infusing Green: Requirements Engineering

for Green in and through software systems. 3rd Intl.
Workshop on Req. Eng. for Sustainable Systems, 2014

[2] B. Penzenstadler, A. Raturi, D.J. Richardson, B.
Tomlinson. Safety, Security, now Sustainability: the Non-
Functional Requirement for the 21st Century. IEEE
Software: Green Software, 2014.

[3] Silberman, M. S. Information systems for the age of
consequences. LIMITS ’15, submitted.

[4] Tainter, J. The collapse of complex societies. Cambridge
University Press, 1990.

[5] http://www.bls.gov/ooh/computer-and-information-
technology/software-developers.htm

[6] http://www.dhs.gov/critical-infrastructure-sectors
[7] http://www.nsf.gov/pubs/2014/nsf14524/nsf14524.htm

